United States Department of Agriculture

Statistical Reporting Service

Statistical Research Division

SRS Staff Report Number AGES 840425

~

1981 Sorghum Objective Yield Study

Dave Aune

1981 SORGHUM OBJECTIVE YIELD STUDY. By Dave Aune; Statistical Research Division, Statistical Reporting Service, U.S. Department of Agriculture; April, 1984. SRS Staff Report No AGES840425.

ABSTRACT This study shows that objective procedures can be applied to estimate sorghum yield and that several plant characteristics can be observed early in the growing season and used to forecast gross yield. The 1981 results in Kansas were encouraging for gross yield and farmer reported yield. However, lodging in postharvest samples caused a very high harvest loss. The final number of heads per acre can be predicted with good accuracy using stalk and head counts. Forecasts of final grain weight per head can also be made but these models do not provide the same precision as the head count models.

ACKNOWLEDGMENTS The author wishes to thank Moe Johnson, Statistician-in-Charge of the Kansas Crop and Livestock Reporting Service for promoting the survey. The author also wishes to thank Herb Vanderberry and Phil Doctor and the office personnel and enumerator staff of the Kansas State Statistical Office for their efforts in collecting the data. Their comments and suggestions have made significant contributions to improving the survey. The assistance of the Objective Yield and Mail Survey Section of the Data Collection Branch and the Enumerative Support Group of Systems Branch is also appreciated. Special thanks is extended to Bill Iwig for his assistance in the development of the survey procedures and his help in coordinating this survey with the SORGF survey activities.

TABLE OF CONTENTS	ABSTRACT
	ACKNOWLEDGMENTS
	INTRODUCTION · · · · · · · · · · · · · · · · · · ·
	SUMMARY
	DATA COLLECTION PROCEDURES
	DATA COLLECTION PROBLEMS
	ANALYSIS ASSUMPTIONS
	SURVEY EXPANSIONS AND ESTIMATES
	Yield Expansions
	Plot Comparison
	Acreage Estimates
	PLOT OPTIMIZATION
	FORECAST MODELS
	Final Head Count
	Weight per head
	EDIT LIMITS
	RECOMMENDATIONS
	REFERENCES
	APPENDIX 1 Forms
	APPENDIX 2 Maturity Code Descriptions
	APPENDIX 3 Plots
	APPENDIX 4 Regression Diagnostics
	APPENDIX 5 Edit Limits

1981 SORGHUM OBJECTIVE YIELD STUDY Dave Aune

INTRODUCTION The Statistical Reporting Service (SRS) has conducted annual objective yield (OY) surveys for the major field crops since the late 1950's. Several different research studies were conducted between 1959 and 1972 to develop procedures for a grain sorghum objective yield. This research was revived in 1981 with the intent of beginning a regular operational objective yield survey in 1982. Subsequently, budgetary constraints have delayed the implementation of this program.

This study examined all aspects of an objective yield survey with much of the direction provided by the results of the earlier research. The objectives of this project were:

- 1. to examine the mean expanded net yield and sampling error from the survey data to determine if the procedure provides a reliable yield indication.
- 2. to derive the optimum plot size and the number of plots to be set out in each field.
- 3. to begin development of forecasting models and determine which data items should be retained and which can be eliminated.
- 4. to establish editing criteria for data collected for future surveys.
- 5. to collect data to assess the large area application of SORGF, a grain sorghum growth simulation model.

This paper focuses on the results of the traditional objective yield portion of the survey. However, some of the SORGF data provides some useful information for building forecasting models. The analysis of SORGF is presented in a separate report.

Sorghum Objective Yield research dates back to 1959 when Iowa State University began a series of projects lasting five years. In these studies, researchers looked at alternative ways of estimating number of kernels and dry kernel weight, examined several measurable plant characteristics for their value as predictor variables, and derived optimum number of plots and plot size. The 1959 study (Nieto de Pascual, 1960) used three methods of estimating the kernel count of a head. The methods were (1) counting the kernels on a randomly selected branch and expanding by the branch count, (2) counting the kernels on two branches in each of three strata and expanding to strata totals and summing these totals, and (3) weighing two samples of 200 kernels each and dividing this average weight into the total grain weight. The second approach proved to be the best, however this method is very tedious. An optimum plot of 3 rows by 80 feet was derived. The 1960 study (Nieto de Pascual, 1961) examined wet head weights, wet kernel weights, and head stem weights over time to learn about growth characteristics. The optimum plot was found to be two rows by four feet for estimating weight per head. The 1961 study (Cochran, 1962) computed correlations between dry kernel weight and 13 observable plant characteristics including culm diameter, head length, and head circumference for different fieldwork periods. Correlation coefficients were small for all variables in August but By mid-October, most improved considerably in September. correlations were greater than 0.8. Three methods of estimating kernel count were attempted: (1) visually comparing a head to a head with known number of kernels, (2) obtaining the weight of two samples of 100 kernels and dividing the average into the total kernel weight, and (3) counting the kernels in a three gram sample. The weight estimator was good in September and October, but none of the methods worked in August. The derived optimums were five plots, each one row by ten feet. The 1962 study (Cochran, 1963) focused on predicting dry kernel weight using plant counts and dry matter weight data collected in August and September. The 1963 study (Baker, 1964) continued the work done during the previous study.

SRS researchers first became directly involved in Sorghum OY studies in 1964. A project using only three subjectively chosen farms was inititated by the Oklahoma State Statistical Office. The findings of this study (Von Steen, 1966) indicated culm diameter and head length are the best characteristics to use for prediciting grain weight per head. The study also notes that head volume (water displacement) may be of value as a predictor variable. The optimum plot size based on August plant counts was found to be two rows by five feet. A 1969 project, conducted in Texas and Kansas, looked at detailed counts and measurements on heads clipped at immature growth stages. The report (Vogel, 1970) presents simple correlation coefficients between several plant measurements including culm diameter, head length, dry head weight, and head width at the midpoint. The field procedures were not designed to check optimum plot size. A 1971 study was performed in Texas and focused on developing forecast equations for grain weight per head and final head count. This study also introduces models by maturity category. The report (Wood, 1972) identifies head length, culm diameter, and dry head weight as the most useful predictor variables for grain weight per head. Head and stalk counts are used to forecast final head count at harvest. The optimum number of plots was found to be two with each plot three rows by five feet.

SUMMARY The 1981 Sorghum Objective Yield Research Study has shown that a practical operational survey to estimate grain sorghum yields at maturity is possible. By randomly locating two plots that are three rows by four feet, in an appropriate number of samples, a reliable

estimate of mean gross yield can be made at the State level. Furthermore, various measurable plant characteristics can be observed at immature stages of plant development and used to predict final yields.

The 1981 Sorghum Objective Yield Research Study produced a mean gross yield of 70.4 bushels per acre (bpa) with an average harvest loss of 9.2 bpa from 97 usable samples. The mean net yield of 61.2 bpa is much lower than the Crop Reporting Board estimate of 67 bpa. This is a result of an unusually large mean harvest loss. The farmer reported average net yield is 68.2 bpa. The coefficients of variation for mean gross yield and mean farmer reported yield are less than 5 percent, but the coefficient of variation for mean harvest loss is nearly 19 percent.

The derived optimum number of units per sample is 1.93. The optimum unit size is 2.34 rows by 1.29 sections (each section is 3 feet). The recommended number of units and the unit size is two units of three rows by four feet. The number of fields to be selected is determined by available funding; however, 100 usable samples are adequate to produce a State level mean whose coefficient of variation is less than 5 percent.

Multiple regression procedures were used to establish forecast equations, by maturity class, for predicting final head count per sample from monthly stalk and head counts. By the milk stage, all heads had emerged and stalk count was no longer used as a regressor variable. The value of r-square ranged from .795 to .998 with the mean square error falling from 46.711 in the prebloom stage to 0.612 by hard dough.

The forecast equations for grain weight per head in pounds use a variety of independent variables. The average culm diameter, average head length, and average head circumference figure prominently in the models. The dry matter fraction shows some marginal promise in two maturity classes but its overall usefulness is questionable. The average head volume is so highly collinear with head circumference that it was not considered. The range of the r-square is .361 to .634 and the range of the mean square error is 0.0010 to 0.0044.

DATA COLLECTION PROCEDURES

A sample of 141 fields was selected using the procedures followed for the other field crop objective yield surveys. This procedure selected fields with probability proportional to size from the expanded June Enumerative Survey (JES) acres of sorghum planted or to be planted for grain. This allows a field to be chosen for more than one sample. In 1981, three fields contained two samples and one field selected was for three samples. Figure 1 shows the sample dispersion for 1981.

FIGURE 1 - Sample field locations

Field observations for all samples began in late June to accommodate the needs of the SORGF research. With the operator's permission, three plots (units), each 3 rows by 9 feet, were independently located by moving prescribed distances along the edge and into the field. These distances are independent random numbers of rows and paces assigned to each plot of each sample. Each plot was partitioned into nine 3-foot sections by dividing each 9-foot row length into three equal parts. Figure 2 is a diagram of the plot configuration showing the nine 3-foot sections.

Before physiological maturity, data were collected to be used to develop forecast models for heads per acre and grain weight per head. Due to the detailed nature of these measurements and the amount of time required to make them, these monthly measurements were made in a subplot within each unit. The subplot was defined to be the first section in rows 1 and 2 (sections numbered 1 and 2 in Figure 2). Also, during the monthly visits, five heads were clipped from plants lying outside Unit 1 and mailed to the State office for additional measurements.

At maturity, all heads in each unit were clipped and weighed section by section. Those heads located within the subplots used to obtain monthly data (sections 1 and 2) were mailed to the State office. The remaining heads were disposed of according to the farmer's wishes.

After harvest, three gleaning units, each 2 rows by 3 feet, were laid out in even-numbered samples. A unit was located 5 rows and 5 paces away from each pre-harvest plot. Heads, partial heads, and loose grain within each unit were picked up and mailed to the State office in order to estimate harvest loss.

Farm operators were interviewed before the first field visit and after harvest to obtain planting and harvesting data. The initial interview, conducted in June, was used to obtain field acreage, sorghum variety, planting date, planting depth and permission to perform fieldwork. The post-harvest interview was used to secure the farmer's realized final yield. Copies of the forms used to collect the data are displayed in Appendix 1. A more detailed explanation of the field procedures can be found in the <u>1981 Sorghum Objective Yield Research Study</u> Enumerator's Manual.

The Generalized Edit (GE) System was used to reformat and edit the data. The editing guidelines as well as instructions for pre-survey

preparations and laboratory procedures are described in the <u>Sorghum</u> <u>Objective Yield Supervising and Editing Manual</u>. The data were summarized using the Statistical Analysis System (SAS). Information about program logic and record layout is available from Yield Research Branch.

DATA COLLECTION PROBLEMS AND SOLUTIONS

Several problems were encountered while conducting this survey. Some of the problems were created by excessive rainfall during the growing season. However, the majority of the problems resulted from unanticipated field situations and insufficient instructions. Several adjustments were made to the data collection procedures which solved most of these problems. Possible solutions to the remaining problems were found and are recommended for future suveys.

The wet spring of 1981, caused excessive delays in field preparation and seeding. Consequently, intentions made up a larger proportion of the grain sorghum acres planted and to be planted reported on the JES. Since the objective yield sample is selected from JES reported acres, a large number of the fields selected had not been planted by June 1. Rain continued to be a frequent occurrence into June and July, causing several samples to be lost because they were never planted. Other sample fields were planted to soybeans or left idle for fall wheat seedings. Table 1 shows the distribution of samples by their status.

TABLE 1 - Frequency of final field work status

Sample status	Frequency	Percent
Fieldwork complete	97	68.8
Selected field not planted to sorghum	20	14.2
Selected field not for harvest as grain	1	.7
Farmer harvested before fieldwork was complete	4	2.8
Samples lost during season	2	1.4
Farmer refusal	17	12.1
TOTAL	141	100.0

Stalk counts made during all early season and final preharvest visits proved to be difficult. The definitions provided in the Enumerator's Manual were based on anticipated field situations. It was assumed that each point of emergence would consist of one main stalk with a few tiller stalks possible. A tiller stalk was defined to be a stalk that emerges from the ground close to the main stalk, often at a slight slant. Tillers are smaller in size compared to a main stalk and lack the brace roots present in main stalks. It was further assumed that each main stalk would produce a maximum of one head and that tillers would produce no heads. As the plants developed, many stalks that had been categorized as tillers had grown to the same size as the main stalk. Nearly all of these stalks had formed a head and displayed brace roots. It became obvious that counting total stalks and stalks with heads using the original definitions was of no benefit to the survey. Therefore, enumerators were instructed to count heads instead of stalks with heads. Futhermore, it is recommended that the stalk guestion in future surveys be modified to enable a count of tillers in addition to main stalks and that definitions allow for several main stalks at a point of emergence.

Previous sorghum research suggested that the volume displacement of a sorghum head might be an effective predictor of a final weight per head. In order to compute the volume, enumerators obtained a head circumference measurement by wrapping a cloth tape measure around the widest part of the head. The tape was drawn in tightly around the branches without constricting the head. There were two problems with this measurement approach that made it extremely difficult for enumerators to be consistent. First, the tape measure was hard to handle and enumerators had trouble locating the widest point of the head. A new measuring device was developed by printing the scale on a sheet of transparent plastic enabling the enumerators to form a cylinder around the head. The other problem was one of how tight to pull the measuring device around the head. The original definition left far too much latitude to provide consistent results. No change was made to the 1981 definition. It is recommended that the circumference measurement be made by pulling the cylinder as tight as possible around the head without damaging it. This means that head circumference measurements cannot be done until the head has completed flowering to avoid damaging the head.

During their monthly visit, enumerators encountered numerous instances in which the head was partially emerged from the flag leaf. Many enumerators were not sure whether these heads should be included in their total head count. The enumerators were instructed to include partially emerged heads in their count. Also, the lowest branching on the head was covered making the culm diameter and head length impossible to accurately measure. For these cases, head measurements were forfeited since pulling back the flag leaf would alter the development of the plant. It is not necessary that head measurements be made on an all or nothing basis. In future surveys, enumerators should make any of the head measurements that can be made without damaging the plant. Sorghum enumerators with experience in other field crop objective yield surveys commented that it seemed that an inordinate number of units fell near the edge of the field. It is unknown whether this was a chance occurrence or a bias in the table of random numbers used for unit location. A true bias is likely to cause lower gross yield expansions and higher harvest losses since field edges frequently have lighter plant stands and poorer development. The rows and paces used for sorghum were chosen from the table used for wheat objective yield. The wheat table was chosen for its availability and convenience. Although no firm statement can be made about this situation, unit location numbers from a row crop objective yield are recommended for future surveys.

ANALYSIS ASSUMPTIONS

Participation in all objective yield surveys is voluntary. The inability to obtain data due to an unwillingness to cooperate or the unavailability of the sample field may introduce a bias. A summary by status of the final preharvest visit is shown in Table 1. The amount of the bias is affected by the number of samples with no information and the characteristic differences between the respondents and nonrespondents. The analysis of this survey assumes that no difference in yield components exists between the two groups and the state level mean is imputed. An alternative method of imputation would be to use a yield estimate from comparable fields for missing samples. Since the objective yield sample is selected from JES segments which are stratified by cultivation intensity, this approach could be done. However, the distribution of the OY samples is heavily skewed toward the more intensely cultivated land use strata, leaving very few samples in the lower intensity strata on which to estimate yield.

Variances were computed by assuming simple random sampling. This assumption is made for all operational objective yield surveys. The application of this assumption has been questioned since it disregards the actual sampling design. The validity of the assumption is currently being investigated. A preliminary report indicates that the assumption of simple random sampling is acceptable.

SURVEY ESTIMATES AND ESTIMATES Yield Expansions

The final mean net yield expansion is the most important product of the objective yield survey. This expansion provides an indication, based on a probability survey, of the yield actually realized by farmers. The net yield is computed by estimating gross yield (biological production) and deducting the quantity of grain lost because of the harvest process. All expansions are computed at the sample level and averaged to obtain the State mean. All yield expansions are expressed as bushels per acre. A bushel of grain sorghum is defined to be 56 pounds of grain at 15.5 percent moisture.

The formulae for computing the yield expansions are:

gross yield = (heads per acre) (net weight per head in pounds)
(56)
harvest loss = [(grams of grain from heads and pieces) + 2 (grams of loose grain] x

$$\begin{bmatrix} (43,560)(12) \\ (12 row-width)(18) & 1-moisture content \\ (12 row-width)(18) & .845 & .14560 \end{bmatrix}$$
where,
heads per acre = (total number of heads from 3 units) x $\begin{bmatrix} (43,560)(12) \\ (81)(12 row-width) \end{bmatrix}$
net weight per head = $\begin{bmatrix} field weight per \\ head in pounds \end{bmatrix} \times \begin{bmatrix} threshing \\ fraction \end{bmatrix} \times \begin{bmatrix} dry matter \\ fraction \end{bmatrix}$
threshing fraction = weight of threshed grain in grams
weight of heads at threshing
dry matter fraction = (field weight of lab heads in pounds)(453.6) · 1-moisture content
weight of heads at threshing in grams . .845
and
56 converts pounds to bushels
453.6 converts grams to pounds
453.6 converts grams to pounds
81 represents the total feet of row clipped
10 row clipped

12 row-width is the sum of the three 4 row-space measurements

18 represents the total feet of row gleaned

.845 standardizes the moisture to 15.5 percent.

Table 2 presents the descriptive statistics for the survey estimates and the two main components of gross yield. Three estimates of net yield are shown. The correct survey estimate of the final mean net yield is 61.179 bpa with a standard error (SE) of 3.853 and a coefficient of variation (CV) of 6.3 percent. The mean net yield based only on samples that were gleaned is 64.38 (SE = 4.976, CV = 7.73). The farmer reported net yield is 68.231 (SE = 3.274, CV = 4.8). The official Crop Reporting Board (CRB) estimate of final yield is 67 bushels per acre.

Variable	n	Mean	Standard Error	Coefficient of Variation <u>1</u> /
Heads per acre	97	36,054	1,522	4.22
Weight per head (lb)	97	.112	.005	4.46
Gross yield	97	70.373	3.438	4.89
Harvest loss	39	9.194	1.730	18.82
Comparable net yield <u>2</u> /	39	64.380	4.976	7.73
Farmer reported net yield <u>3</u> /	95	68.231	3.274	4.80
Net yield <u>4</u> /	97	61.179	3.853	6.30

TABLE 2 - Summary of yield estimates

- 1/ The coefficient of variation (CV) is the standard error divided by the mean expressed as a percent.
- 2/ Net yield computed using only those samples for which gleanings were made.
- 3/ Net yield reported on the Form D postharvest interview.
- $\overline{4}$ Net yield computed as mean gross yield minus mean harvest loss.

The mean net yield is low compared with the CRB and farmer reported estimates. The mean gross yield is consistent with the other estimates; however, the mean harvest loss is very large. Figure 3 plots the expanded harvest loss versus gross yield for the samples that were gleaned. The plot vividly shows the presence of several extremely large harvest loss expansions. The farmers, whose fields produced the six largest harvest loss expansions, reported significant damage due to lodging in the selected field. The causes given were insects and wind. The mean of the ratios of harvest loss to gross yield to is 15.9 percent. State mean harvest loss ratios for other OY crops generally range from 4 to 10 percent of gross yield. The presence of large harvest loss expansions is common, however, the small number of gleanings (39) allows the outliers to greatly influence the State mean.

H R 40 V E S T 35 L 0 5 5 P E R A C R E 100 105 110 115 120 125 130 135 ٨n GROSS YIELD PER ACRE

FIGURE 3 Expanded harvest loss vs expanded gross yield

Plot Comparison

Since the final preharvest data were recorded section by section, the mean gross yield can be computed for several plot sizes. Beginning with the first section in Row 1, rows and sections can be added to form units of up to three rows that are three, six, or nine feet in length. The mean, standard error, and coefficient of variation of gross yield for all possible plot sizes are shown in Table 3. The consistency of the data is demonstrated by the diminishing standard errors as the number of rows increases.

Number		Length of Rows			
of r	ows	3 feet	6 feet	9 feet	
1	mean standard error	71.901	72.503	71.306	
	C.V.	5.25	5.13	5.02	
2	mean	71.712	72.111	70.920	
	standard error	3.661	3.489	3.489	
	C.V.	5.10	4.84	4.92	
3	mean	71.149	71.062	70.373	
	standard error	3.574	3.420	3.438	
	C.V.	5.02	4.81	4.89	

TABLE 3 - Mean, standard error, and coefficient of variation for gross yield for selected plot sizes

- 1/ Standard error divided by mean expressed as a percent.
- Acreage Estimates The estimate of planted acres of sorghum from the JES is adjusted to estimate the acres of sorghum for harvest as grain. The adjustments are based on data collected from the two farmer interviews conducted during the survey. For each sample, the ratio of the acres of sorghum for harvest as grain as reported during the initial interview (Form A) to the JES acres of sorghum planted and to be planted was computed. The mean ratio was used to adjust the State expanded JES acres to estimate the acres of sorghum for harvest as grain. In 1981, the mean ratio was 0.819 and the expanded JES acres planted and to be planted for grain in Kansas was 3,840,934. The estimate of acres of sorghum for harvest as grain is 3,145,725 with a standard error of approximately 286,044. The standard error is approximate because the covariance could not be calculated.

The second adjustment is based on the post-harvest interview (Form D) field level data. The ratio of the acres harvested in the sample field as reported on the Form D to acres in the sample field as reported on the Form A revises the acres for harvest estimate. The mean ratio is 0.997 and the revised estimate of acres for harvest as grain is 3,136,288 with a standard error of approximately 288,602. The final CRB estimate of acres of sorghum harvested for grain is 3,560,000.

PLOT OPTIMIZATION Previous sorghum objective yield research has produced several different optimum plot sizes. No concensus plot size has been established because of different cost functions and different analysis approaches. The 1981 survey was designed to recompute the optimums. The approach used for this project is to simultaneously derive the optimums for number of plots, rows within plots, and length of row using the variance components and cost for each level.

A nested analysis of variance was used to find the variance components. The sample plots were constructed such that sections are fully nested within rows, rows are nested within units and units within samples. The design is also completely balanced. That is, each row has the same number of sections (observations).

The general form of the linear model is:

$$Y_{ijkl} = \mu + A_i + B_i(j) + C_{ij(k)} + D_{ijk(l)}$$

where

 Y_{ijkl} = total head weight for section 1 in row k in unit j of sample i. μ = overall mean.

 \dot{A}_i = between sample effect (i = 1,2,...97). $B_i(j)$ = between plots within samples effect (j = 1,2,3). $C_{ij}(k)$ = between rows within plots effect (k = 1,2,3). $D_{ijk}(l)$ = between sections within rows effect (l = 1,2,3).

Each level has mean 0 and variances σ_a^2 , σ_b^2 , σ_c^2 , and σ_d^2 , respectively. Rows and sections were selected using contiguous sampling. This means that rows and sections are not sampled randomly, but are chosen in groups. Wood (1972, p.5) notes that the use of variance components eliminates the problem of bias since the variance components are computed within the next highest level instead of over the entire population.

The degrees of freedom and expected mean squares for a three-way nested analysis of variance are shown in Table 4. By equating the mean squares with their respective expected values, estimates of the variance components can be found by solving the system of equations. The mean squares for the 1981 survey data are also shown in Table 4.

 TABLE 4 - Degrees of freedom, mean squares, and expected mean squares for three-way nested analysis of variance

Source	df	MS	E(MS)
Between Fields	96	6.065	$\sigma_{d+3}^2 \sigma_{c+9}^2 \sigma_{b+27}^2 \sigma_{a}^2$
Between Units	194	0.942	$\sigma_d^2 + 3 \sigma_c^2 + 9 \sigma_b^2$
Between Rows	582	0.411	$\sigma_d^2 + 3 \sigma_c^2$
Within Rows	1,746	0.216	σd
Corrected Total	2,618		

The costs in minutes primarily represent the average amount of time attributable to each level. For example, the cost between rows is the time spent gathering equipment and moving to the next row. The between sample cost is adjusted to include mileage and the between section costs includes the time required to perform the clipping and weighing. The cost estimates were based on times recorded on the survey forms, administrative records and field experience. The cost estimates are shown in Table 5. By letting 'C' represent cost and 'n' represent sample size, the following formulae were used to find the optimum sample sizes. A brief discussion of this approach can be found in Jessen (1978), Section 9.3.

The number of fields to be selected (n_a) is primarily determined by funding levels with consideration given to a target coefficient of variation. Table 5 presents the actual variance components, cost estimates, and optimum sample sizes derived from the survey data. While the optimum number of units and rows must be integers, the optimum row length (1.29 sections) can be expressed as 3.87 feet. Therefore, the recommended number of plots is two and recommended plot size is three rows by four feet.

TABLE 5 - Variance components, cost estimates and optimum sample size

Level	Variance component	Cost estimate <u>1</u> /	Optimum sample size
Between fields	.1898	120	
Between units	.0590	10	1.93
Between rows	.0648	2	2.34
Between sections	.2145	4	1.29

1/ Expressed in minutes

FORECAST MODELS The 1981 data give evidence that reasonable forecast models can be developed for predicting final head count and final net weight of grain per head from early season counts and measurements. These predicted values, along with current year row space measurements, provide forecasts of gross yield per acre in advance of the harvest season. An estimate of historic harvest loss is deducted from the predicted gross yield to forecast net yield. The forecast models are developed by maturity class since the worth of the predictor variables depends on the growth stage of the plants. The maturity class of each unit is determined by field enumerators according to the definitions in Appendix 2. The rounded average of the three unit maturity classes was used to determine the maturity class of the sample.

Final Head Count Two variables were collected monthly as regressor variables for forecasting the total number of heads in all units at harvest. These are total stalk count (excluding tiller stalks) and total head count. Originally, enumerators were instructed to count the number of stalks with heads instead of the number of heads. However, during the August 1 survey, enumerators had so much difficulty differentiating tillers and main stalks that the question was changed to count the number of heads. The change of measurement did not affect the forecast models because most samples had not developed heads by the August 1 survey period.

> A known collinear relationship which becomes stronger as the plant develops exists between the two regressor variables. For this reason, no statistical check was made for collinearity. A stepwise regression procedure was used to identify which variables should be included in the model for each maturity class. The significance level for entry and the significance level to stay were 0.15.

> With the form of the model established for each maturity class, the data sets were individually examined for influential data points. Six diagnostics were used to flag potential extreme data values. The diagnostics are the studentized residual, Cook's D, the covariance ratio, DFFITS, and two DFBETAS. A brief description of these is given in Threshold values for each diagnostic were based on Appendix 4. suggestions from Belsley, Kuh, and Welsch (1980) and values used by SRS (Methods Staff). Any observation that produced four or more diagnostics that were more extreme than the threshold value was deleted. Observations with three extreme diagnostics were deleted only if the more conservative diagnostics (studentized residuals and Cook's D) suggested their removal. Fewer than ten percent of the observations were deleted from any class. Plots of the final head count versus the regressor variables selected for each maturity class are shown in Appendix 3. The circled observations were deleted from the data set.

> Table 6 presents the "best" regression equation for each maturity class and the associated statistics. The evolution of the models through successive maturity classes clearly show the survival characteristics of a sorghum head. Once a head emerges and begins to flower (bloom class), the likelihood of its survival to maturity is very high. Thus, all models which use monthly head count as a regressor variable have rsquared values of .900 or greater with diminishing mean square errors (MSE).

TABLE 6 - "Best" regression equations for final head count

Maturity Class	n	r ²	MSE	Equation
Prebloom (1)	90	0.795	46.711	6.1203 + 0.9603 (stalks)
Bloom (2)	36	0.945	9.523	3.2219+0.1474(stalks)+0.8555(heads)
Milk (3)	38	0.900	22.631	4.8843 + 0.9225 (heads)
Soft Dough (4)	42	0.977	3.871	0.6047 + 0.9878 (heads)
Hard Dough (5)	22	0.998	0.612	0.5090 + 0.9748 (heads)

Weight per Head Forecast models for final net grain weight per head were more difficult to develop. The weight per head is defined as the average weight in pounds of threshed grain per head adjusted to 15.5 percent moisture. Five independent variables were collected during the monthly visits for use as regressor variables. The five variables are culm diameter, head length, head circumference, head volume, and dry matter fraction. These variables have shown some promise as forecast variables in previous sorghum research (Cochran (1961), Von Steen (1966), Vogel (1970), Wood (1972)).

> The culm diameter was measured one-half inch below the lowest branching. Since a culm is not perfectly round, the widest diameter was recorded. The head length was measured from the lowest branching to the tip of the head. The head circumference was obtained by placing a sheet of plastic around the head as tightly as possible without constricting the head. The head volume variable is a value proportional to the true volume and was derived as the square of the circumference multiplied by the head length. The dry matter fraction was found by dividing the weight of five heads dried to zero moisture by the weight of these heads before drying. Enumerators clipped the five heads from stalks located just outside Unit 1. These heads were taken beyond Row 1 during one month and beyond Row 2 the next month. If a third monthly clipping was necessary, the heads were clipped from Row 1 beyond the first clipping area.

> The matrix of pairwise correlations between all independent variables and the final grain weight is shown in Table 7. The culm and head measurement not only show good correlation between themselves but also with final grain weight. However, the extremely high correlation between the circumference and volume is an indication of the possible presence of collinearity. Since the volume variable represents the interaction between length and circumference, the presence of collinearity is not unlikely. The dry matter variable shows poor correlation with all other variables.

Variable	Length	Circumference	Volume	Dry Matter	Grain Weight
Culm Diameter	0.621 306	0.559 306	0.508 306	-0.043 281	0.550 288
Head Length		0.443 306	0.443 306	-0.098 281	0.439 288
Head Circumference			0.938 306	0.015 281	0.424 288
Head Volume				-0.004 281	0.427 288
Dry matter					0.070 273

TABLE 7 - Correlation matrix for independent variables and final net grain weight per head with sample sizes

When the data were partitioned by maturity class for model development, only two observations remained in the prebloom class. The final mean net weight of grain is given as the forecast of final grain weight per head for this class. The data sets for the other four maturity classes were examined for collinearity using the Variance Inflation Factor (VIF). In each class, the average head volume displayed a strong dependency (high VIF) and was dropped from the general form of the model. The collinearity statistics were recomputed on the new model and no other dependencies were evident. Appendix 4 presents a brief description of the VIF.

Each data set was checked for influential data points using the four variable model. The same diagnostics used in the development of the head count models were used and the same decision criteria were applied. A total of eight diagnostics were examined (four of them were DFBETAS). Observations flagged as being extreme by five or more diagnostics were deleted. Decisions on observations with four extreme diagnostics were made on a case by case basis. The total number of observations deleted was eleven. All classes had fewer than ten percent of the observations deleted.

A stepwise procedure was used to select the most important variables in each maturity class. The r-square value of models produced by this procedure were reviewed with respect to the r-square values of all possible models. Table 8 presents the "best" regression model for each maturity class with the sample size, r-square and mean square error for each maturity class. The model shown is the model produced by the stepwise selection procedure for each class except the hard dough class. In this class, a three variable model was chosen over the one variable (circumference) model established by the stepwise process. The selected model has a larger r-square (by 38 percent) and a smaller mean square error (by 9 percent) than the stepwise model. The stepwise procedure did not find other significant variables because of a lack of degrees of freedom.

All observations that had been previously deleted were reinstated and the influential data analysis was repeated. This analysis resulted in only one of the reinstated observations being retained and two additional observations being deleted. The parameter estimates shown in Table 8 were derived from the final data set.

TABLE 8 - "Best" regression equations for net grain weight per head

Maturity class	n	r ²	MSE	Equation
Pre-bloom (1)		(1981 a	verage)	0.11195
Bloom (2)	45	0.361	0.00091	- 0.10672 + 0.01811 (diameter) + 0.00674 (length) - 0.00196 (circumference)
Milk (3)	32	0.634	0.00066	- 0.06762 + 0.01121 (length) + 0.00501 (circumference) - 0.08227 (dry matter)
Soft dough (4)	36	0.550	0.00044	- 0.03936 + 0.01738 (diameter)
Hard dough (5)	16	0.501	0.00100	- 0.06695 + 0.01023 (length) + 0.00840 (circumference) - 0.08870 (dry matter)

Because of the difficulties in performing the measurement, the average head circumference was not expected to be a very useful variable. The data do not show evidence supporting this. When the head circumference measurement is redefined to be more consistent, it should be a more valuable regressor variable. The average dry matter fraction proved to be a marginally useful variable. Although dry matter appears in two of the final models, most of the models containing dry matter had the lowest r-square values. Since the dry matter fraction is an expensive data item, its value as a regressor variable should be closely monitored in a research mode before deciding to use it in an operational program.

- EDIT LIMITS Reasonable edit limits must be established to insure the quality of the data used in forecasting and estimating. This is especially true in an operational survey since the editing of data is decentralized. Recommended edit limits are presented in Appendix 5. These limits were established by reviewing the descriptive statistics and frequency counts. The frequency distribution of most of the data items is skewed toward the larger values and the suggested edit limits reflect this.
- RECOMMENDATIONS The following list of items outlines recommended changes to the Sorghum Objective Yield Survey procedures. The recommendations are based on actual field experience as well as the analysis of the data collected.
 - 1. The optimum plot size and number of plots derived from the 1981 data is 2 units of 3 rows by 4 feet. However, while the program is in a research mode, a plot size of 3 rows by 2 sections is recommended for each of 2 units. This will enable the optimums to be reexamined.
 - 2. Redefine the head circumference measurement. The original approach led to gross inconsistencies in how enumerators obtained the data. A new measuring device was introduced during the survey to improve the quality of the measurement. The new device, made from transparent plastic, made it easier for enumerators. However, two problems remain. The first is how tight should the device be drawn around the head and, second, is that the plastic was only 10 inches long and was frequently too short to encompass the entire head. Both problems can be solved by defining the actual measurement to be the circumference of the head with all branches drawn in snugly within the cylinder. This measurement cannot be made until all flowers have dried to avoid damaging the head.
 - 3. Change stalk and head count questions on all Form B's. This will help determine how to deal with the problem of identifying tillers. During this study, several stalks that were identified as tillers in August developed into main stalks (individual root systems and heads) in later months. The new questions should be:
 - 3a. Number of main stalks
 - b. Number of heads on main stalks
 - 4a. Number of tiller stalks
 - b. Number of heads on tiller stalks

Stalks placed in Item 4a in August will not be required to remain as tillers throughout the survey. If, as the plant develops, it becomes apparent that a "tiller" should have been classified as a main stalk, it can be moved into Item 3a. This approach will help evaluate, through month to month shifts, the difficulty of correctly identifying tillers and still provide a total count of heads. Item 4b should seldom be positive.

- 4. Clarify when a head becomes a head. A head should be counted if any part of the head has emerged from the leaf sheath and is clearly visible.
- 5. Determine rows and paces using the Corn Objective Yield table. The corn table is structured for 2 independent units and was not compatible for this year's survey with 3 units. The wheat table was used as a substitute but there were a couple of problems encountered. Wheat OY uses paces along and paces into the field. This permits zero paces along the edge of the field which is not acceptable when rows are substituted for paces. The other problem is that an inordinate number of units fell along the edge of the field, which is believed to be a contributing factor to the problems of excessive harvest losses. Hopefully, the corn tables will help solve some of these gleaning problems.
- 6. Although the volume measurement was dropped as a regressor variable in 1981, it should not yet be eliminated from the survey. Since the volume is an interactive term between circumference and length, it should continue to be considered until the problems of measuring circumference are resolved.

REFERENCES

- 1. Baker, Harold, <u>1963 Sorghum Production Study</u>, unpublished progress report, Statistical Laboratory, Iowa State University, July 1964.
 - 2. Belsley, David A., Edwin Kuh, and Roy E. Welsch, <u>Regression</u> <u>Diagnostics</u>, John Wiley and Sons, Inc., 1980
 - 3. Cochran, Robert, <u>1961 Sorghum Production Study</u>, unpublished progress report, Statistical Laboratory, Iowa State University, November 1962.
 - 4. Cochran, Robert, <u>1962 Sorghum Report</u>, <u>Progress Report</u>, Statistical Laboratory, Iowa State University, September 1963.
 - 5. Graybill, Franklin A., <u>An Introduction to Linear Statistical Models</u>, <u>Volume I</u>, M^cGraw-Hill Book Company, Inc., 1961
 - 6. Jessen, Raymond J., <u>Statistical Survey Techniques</u>, John Wiley and Sons, 1978.
 - 7. Nieto de Pascual, Jose, <u>1959 Sorghum Production Study</u>, unpublished progress report, Statistical Laboratory, Iowa State University, June 1960.

- 8. Nieto de Pascual, Jose, <u>1960 Sorghum Production Study</u>, unpublished progress report, Statistical Laboratory, Iowa State University, April 1961.
- 9. SAS Institute, Inc., SAS Users Guide, 1979 Edition.
- 10. Statistical Reporting Service, <u>1981 Sorghum Objective Yield</u> Research Study, Enumerators Manual, April 1981.
- 11. Statistical Reporting Service, <u>1981 Sorghum Objective Yield</u> Supervising and Editing Manual, May 1981.
- 12. Statistical Reporting Service, <u>Regression Analysis Program</u>, unpublished documentation, Methods Staff, August 1982.
- 13. Vogel, Fred, Objective Yield Techniques for Estimating Grain Sorghum Yields, Research and Development Branch, Statistical Reporting Service, USDA, November 1970.
- 14. Von Steen, Donald H., <u>Grain Sorghum Study</u>, Research and Development Branch, Statistical Reporting Service, USDA, March 1966.
- 15: Wood, Ronald A., <u>Grain Sorghum, A Preliminary Forecast Model</u>, Research and Development Branch, Statistical Reporting Service, USDA, September 1972.

Appendix 1: Forms

UNITED STATES DEPARTMENT OF AGRICULTURE ECONOMICS AND STATISTICS SERVICE

FORM A: SORGHUM YIELD SURVEY - 1961 INITIAL INTERVIEW

If no sorghum use planted in tract, correct Table A and return all forms.

RECORD the acreases of sorghum to be horvested for grow in Culumn 6 and ADD to test.

			LEA			
FIELD NUMBER (Sample field number is	TOTAL ACRES IN FIELD	ACRES PLANTED TO SORGHUM	Acres in USES or CROPS other than sorghum to be harvested for grain (For example: fence rows, ditches, waterways, roads, other crops, etc.)		ACRES OF SORGHUM FOR GRAIN	
circled.)			USE	ACRES		
1	2	3	4	5	6	
1	•	•		•		_
					•	_
	•	•		•		
	- da			•	•	_
	•	•		•		
	•			A	•	_
	•					
	•				•	
	•	•		· · · · · · · · · · · · · · · · · · ·		
					•	
	•			•		
				1	•	
					102	

TABLE A

2. The total sorghum screage /Column s/ to be harvested for grain in this tract is

NO - Review all fields, RE-ADD Column &.

S THAT RIGHT? VES - Continue

FORM A: SORGHUM (Cont'd)

All quantions on this page apply to the SAMPLE FIELD ONLY.

If no sorghum is intended to be heroested for grain in the	t designated
ample field, BUT a NEW field to be harvasted for grain	is listed in
Table A, this new field then becomes the sample field to	enter in
Item 3.	

1	Copy earm of sorghum for grain in Semple Field Number or "0"	103
	Wittam 3 is zero, go to Form H.	
•	s. On what data was this field planted? ()	106
	1	104
	b. What veriety of grain sorghum is planted in this field? ()	
	e. What was the planting depth?	107 .

NOW - COMPLETE FORM H BEFORE ASKING ITEM 5.

K .	"With your permission I will go out to the field and mark off three small units to be used in making stalk and head counts. I will return to the units to record the date of half-bloom and each month until harvest to make counts and alip a few heads to determine their weight and size. After you have finished herverting this field, I will return to sak you about production. It will be appreciated if you can keep a record of the total amount of sorghum hervested from this field. I will also go out to the field a few days after hervest and pick up any losse grain left in the sample plots.
	Would this be all right? Yes No If "no" conclude interview and return all forms.

6. Where should I leave the heads dipped from the units? _____

Thank you very much for your help.

IMPORTANT:	Review this form for completeness. Record stading time and sign name. Calculate the probable date of half-bloom as Planting Date + 2 months. Calculate the probable harvest date as Planting Date + 3% months. Copy these probable dates to the kit envelope. Copy net acrus for harvest for sample field to Question 1 on Form D.		
	Ending Time (Military Time)	172]
	Status Code	180]

Enumerator

UNITED STATES DEPARTMENT OF AGRICU BCONOMICS AND STATISTICS SERVICE	ILTURE	FORM H: SORGHUM YIELD SU	URVEY - 1981 /IEW
v i	LAR, CROP, FORM, MONTH		
L	1001	,]
1; Copy series of sorghum planted in Sem Field No from Form A.	pie , Table A, Col. 3		801
٨٩	are entry - Go to Form A and a	nter ording time.	
If them 1 has	Acreage entry - Continue.		
2. Has this field been (or will it be) irriget	ad?		A 1.4
YES 🖸 = 1 NO 🗆 = 1		Enter Code	
S. Did you or will you apply ANY fartiliz (from 1) arros in Somple	er on these Field No?	ENTER	801
If item 3 has	A Code 2 a	ntry - Go to Item 4. ntry - Go to Form A, Item 5.	
<u>FERTILIZER</u> EXAMPLES OF ANALYSIS I Analysis Means Percentage of N,	BY KIND P20e and K20.		
Kind	Analysis Examples		
Ammonium Mittate Anhydrous Ammonia N Solutions (Pressure) N Solutions (Non-Pressure) Superphorphate	34 - 0 - 0 33 - 0 - 0 37 - 0 - 0; 40 - 0 - 0, 1 32 - 0 - 0, STC. 0 - 46 - 0, STC.	TC	

Mixed Pertilisers (Liquid er Dry) 18-18-12; 6-20-20, STC.

Turn Pare to Record Pertilizer Applications

FORM H: Fertilizer Interview (Cont'd)

4. On these (Item 1) _______scree, how much of each kind of fertilizer has been or will be applied per sore? (Include all amounts applied specifically for this corghum grop since preparation of field began last fall or this spring.)

TABLE A: Use this table to record any fertilizer applications that INCLUDED CARRIER MATERIALS. Record each application on a separate line.

,			ANALYSIS			FORM		WAS
	KIND	Nitragen	Phosphate	Potash	APPLIED	1 - Solid	Monsh When	APPLICA-
Ē		~~~	"7206"	"K10"	ACRE	2 - Liquid 3 - Gas	Applied?	1 - At send- ing or before 2 - After seeding
		Percent	Percent	Percent]	Enter Code	Code	Enter Code
		846	667	844	869	\$10	811	812
1		013	\$14	818	816	817	810	819
۵		820	821	812	813	824	823	826
D.		817	828	829	830	831	832	833
R		834	835	636	637	834	839	840
₽.		641	842	843	844	848	846	647

TABLE B: Use this table to record any fertilizer applications reported in POUNDS of ACTUAL NUTRIENTS. EXCLUDE CARRIER MATERIALS. Record each application on a separate line.

	ACTUA	L NUTRIENTS	PPLIED	FORM	Month	WAS APPLICATION
I N	Nitrogen "N"	Phosphate "PaOs"	Potash "KsO"	Potash 1 - Solid When "KsO" 2 - Liquid Applied 3 - Gas		1 - At seeding or before 2 - After seeding
	Ibs. per acre	Ibs. per acre	lbe, per servi	Enter Code	Enter Code	Bater Code
٨	848	849	850	851	032	633
1.	834	655	886	857	884	
C.	\$49	861	462	963	844	868
D.	864	867	968	869	874	871
2	871	873	874	873	876	677
	270	879	\$60	661	882	883

Enumerator _____ Return to Porm A, Item 5.

UNITED STATES DEPARTMENT OF AGRICULTURE

FORM B. 1: SORGHUM FLOWERING COUNTS 1981

303

306

If YES. enter latest application date ____ __and name of pesticide _

UNIT LOCATION	UNIT 1	UNIT 2	UNIT 3			
Number of rows along edge of field				Date ()	370
Number of paces into field				Starting Tim	N e	
ROW SPACE MEASUREMEN	rs			UNIT 1	UNIT 2	UNIT 3
 Is this the same unit that w. NO if this is the first visit to relocated. 	n laid out la lay out the	it month? (unit or if u	Check nit is	YES D NO D	YES D NO D	YES 🗆 NO 🗆

- For unit(s) checked. YES -sl.ip to Item 3. NO-complete ltem 2 301 302 2. a. Measure distance from stalks in Row 1. to stalks in Row 2 Feet & Tenths 304 303 b. Measure distance from stalks in Row 1.
 - to stalks in Row 5.... Feet & Tenths

OBSERVATIONS WITHIN 2-ROW BY 3-FOOT SECTION

		UNIT 1	UNIT 2	UNIT 3	ALL UNITS
		311	312	313	314
3.	Number of stalks in both rows				
		321	922	323	324
4.	Number of Item 3 stalks with flowers				

5. Compute and record ½ of the total in cell 314

6. Is the figure in cell 324 greater than or equal to the total in item 52

NO - Determine the date of the next visit using the table on the back page.

YES - STOP, no more flowering visits are necessary, the sample has reached the flowering stage.

FORM B-1: SORGHUM (Can'd)

	Г	UNIT 1	UNIT 2	UNIT 3
	្រ	27	324	329
7. Growth stage of each unit	L			

GROWTH ST	AGE	CODE	TIME TO NEXT VISIT
Planting to emerge	nee _	1	8 weeks
First leaf visible	J or less leaves	2	6 weeks
	4 or more leaves	3	4 weeks
First leaf dropped,	no flag leaf	4	3 weeks
Flag lotf extended		5	10 days
Boot or head erner	ped	•	4 days

Use the most advanced growth stage recorded for any of the 3 units to determine when the sample should be visited next Record the date of the next visit on the kit envelope.

	Ending Tim	372
	Status Cod	340
Enumerator		

UNITED STATES DEPARTMENT OF ECONOMICS AND STATISTICS SEI	AGRICULTURF IVICE FORM B - 2: SOR	GHUM YIELD COUNTS - 1981	Form Approved C.M.8. Number 535-68 C. E. 12-00368-2
	YEAR, CROP, FORM, MONTH (1-4)		
MONTH CODE			1
Aug. 1 2 Sept. 1 3 Oct. 1 4 Nov. 1 5	103		
	100-		

Has operator applied pesticides with organophosphorous content since last field visit? YES D NO D

If YES, enter latest application date ______ and name of pesticide _____

UNIT LOCATION

Number of rows along edge of field Number of paces into field

UNIT 1	UNIT 2	UNIT 3
1		1990 et 19
Transac a	and the second second	
	5. · · · · ·	

Is the sample field mature?

D NO, Continue. D YES - STOP, Complete Form B-3.

ROW SPACE MEASUREMENTS

- 1. Is this same unit that was laid out last month? Check NO if this is the first visit to lay out the unit or if unit is relocated. For unit(s) checked: YES — skip to Item 3. NO — complete Item 2.

		YES NO
301	302	303
•	•	•
304	305	306
•	•	•

UNIT 2

1

UNIT 3

UNIT 1

L

OBSERVATIONS WITHIN 2-ROW BY 3-FOOT SECTION

- Number of stalks in both rows
 Number of stalks with heads
- 5. Stage of maturity
 - Pre-flower 1
 - Flower 2
 - Milk 3
 - Soft Dough 4
 - Hard Dough 5

311	312	313
315	316	317
318	319	320

FORM B-2: SORGHUM (Cont'd)

Cuim Diameter (mm) 330 330 330 330 330 330 330	Head Longth (in) 331 . 340 .	Heed Circum. (am)	Culm Diameter (mm)	Heed Longth	Heed Circum.	Culm Diameter	Head	Heed Circum
(mm) 330 330 340 507	()n) 331 349	(om) \$31 +	(man)		1	11	4-1	1 (
• 330 • 940 • 387	• 340	•	333	384	335	334	337	338 (am)
340 . 387	•	341	•		*	•	346	•
340 . 387		· · ·	•	•	•	•	•	•
347	349	380 0	•		•			••••••••
	388	350 .	360 .	361 •	562 +	362 •	264	365 .
410	411	412	413	414	418	416	417	418
410	420	421	422	423	424	425	424	427
488	429	430	431	432	433	434	438	436
437	438	439	440	441	442	443	444	440
440	447	440		44.0	481	482	483	484
488	484	487	484	489	440	441	442	403
				844	848	546	\$47	848
				•	•	•	-	
		· · ·	•	•		•		•
					•	· · ·	· · ·	·····
¢10 •	411	•12			···· ·	····	····	•••••••
619	424	621	622	623	624	615 ·	•1•	627
628	619	630	631	632 .	633	434	438	636
637	638	439	640	641	642	643	644	645
646	647	648	649	48.0	631	492	683	664 .
688	484	687	636	43.9	***		64 2	463 .
711	712	713	714	718	718	717	718	719
720	781	722	723	724	728	726	717	728
720	730	731	731	733	754	738	736	737
738	. 730	740	741	•	743	744	748	746
	· · · ·	1	↓ •	<u> </u>	•	•	•	↓ <u> </u>
Go to Unit 2	orm B-2A for is beyond Ur 2.	recerch it 1;		Go to Unit 3.			Conclude	
101	1 211 (1)	111 65		711	222 a 23	1111	754	
Volume Factor				111				
						Padias Tim	371	
						sugning Time	····· L	

6. For each head, measure the cuim diameter, head length and head circumference.

UNITED STATES DEPARTMENT OF AGRICULTURE

MONTH CODE

Locate the research plants beyond Unit 1, Row 3. Skip the first 5 plants, then label the next 5 plants with red flagging ribbon.

		Plent 1	Flent 2	Plent 3	Plant 4	Plant 5
		200	204	208	212	216
1.		201	205	200	213	217
2.	Cuim diameter (millimeters)	•	•	•	•	•
		202	206	210	214	210
3.	Head length (inches & tenths)					•
		203	207	211	215	219
4.	Head circumference (centimeters)					

S. Have leef measurements on the 5 recession plants been made previously?

🗆 YES - Skip to item 9.

8. Is the coller of the flag leef visible on all 5 plants?

8. Measure the length and width of all leaves on the 5 research plants in inches and tanths.

a. Plant 1

FORM B-2A: SORGHUM (Contid)

Sb. Flutt 2

Longth	Width
204	945
910	•11
916	917
922	923

2.

8.

.

12.

e. Plant 3

	Longth	Width
2	924	927
5.	932	923
8.	936	929
11.	944	945

	Length	Width
1.	928	929
•	934	938
••	•	• •41
♥.		•
12.	• •	947

d. Flant 4

	Longth	Width
	952	983
3.	•	
	956	950
€.		
	984	965
9.	•	
	970	971
12.		•

e. Plant 5

9. Has this sample reached the flower stage or beyond?

Q YES

D NO - Record ending time and return to Form B-2

Skip the first 5 heads beyond Unit 1 or beyond the previous olip area (of appropriate), then clip the next 5 heads according to the schedule below. Bag, tag and send heads to the lab. Label the last plant clipped with red flagging ribben.

September 1 - Row 2 October 1 - Row 1 November 1 - Row 2 August 1 -- Row 1

Do NOT clip any heads beyond Row 3.

Ending Time

Return to Form 8-2

UNITED STATES DEPARTMENT OF AGRICULTURE ECONOMICS AND STATISTICS SERVICE

FORM B-3: SORGHUM YIELD COUNTS - 1981

Has operator applied pesticides with organophosphorous content since last field visit? YES D NO D

If YES, enter latest application date ______ and name of pesticide_____

UNIT LOCATION

Number of rows along edge of field Number of paces into field

UNIT 1	UNIT 2	UNIT 3	

ROW SPACE MEASUREMENTS

- 1. Is this same unit that was laid out last month? Check NO if this is the first visit to lay out the unit or if unit is relocated. For unit(s) checked: YES - skip to Item 3. NO - complete Item 2.
- 2. a. Measure distance from stalks in Row 1
 - b. Measure distance from stalks in Row 1

UN	IT 1	UNIT 2		UNIT 3	
YESD		YES 🗆	NO	YES D	NOD
301	ł	302		303	
	•		•		•
304		305		306	
	•		•		•

OBSERVATIONS WITHIN 2-ROW BY 3-FOOT SECTION

3.	Number of stalks in both rows	311	312	313
4.	Number of stalks with heads	315	316	317-
5.	Stage of maturity	318	319	320

Hard Dough 5

Mature 6

FORM 8-S: SORGHUM (Cont'd)

6.- Clip all heads within each row in the count sections. Record the number of heads and total weight. Bag artiag each row separately. These bags will be mailed to the State office.

	UN	UNIT 1		UNIT 2		UNIT 3	
	Number of Heads	Total Weight (Ibs.)	Number of Heads	Total Weight (Ibs.)	Number of Heads	Total Weight (Ibs.)	
	110	111	112	113	114	115	
a. Row 1, Section 1	· · 	<u> </u>		•		•	
	116	117	118	119	120	121	
b. Row 2, Section 1		•		· ·		•	

7. Clip, count and weigh all heads in the seven remaining sections. Dispose of these heads when all work it done.

a. Row 1, Section 2	122	123	124	125	126	127	•
b. Row 1, Section 3	128	129 .	130	131	132	133	•
c. Row 2, Section 2	134	135	136	137	138	139	•
d. Row 2, Section 3	140	141 •	142	143 .	144	145	•
e. Row 3, Section 1	146	147	148	149 •	150	151	•
1. Row 3, Section 2	152	153 •	154	155 •	156	157	•
g. Row 3, Section 3	158	159	160	161	162	16.4	•

8. Clip heads from all five research plants beyond Unit 1, Row 3. Bag, tag and mail these heads to the State office.

Ending time

Enumerator

.

Status code

UNITED STATES DEPARTMENT OF AGRICULTURE Economics and Statistics Service C.E. 12-0038C-1

FORM C-1: STATE LABORATORY DETERMINATIONS -

1981 SORGHUM YIELD SURVEY - CLIPPING AREA

Lab Technician _____

UNITED STATES DEPARTMENT OF AGRICULTURE ECONOMICS AND STATISTICS SERVICE
FORM C-2: 1031 SORGHUM YIELD SURVEY Pre-Harvest Lab Determinations C.E. 12008C-2 YEAR, CROP, FORM, MONTH (1-4)
Date Analyzed (______) Code 570 HEADS FROM THE COUNT UNITS

		Weight of Heads in bags (grams)	Weight of bags and fasteners (grams)	Number of Heads
	Row 1	501	502	503
1. Unit 1	Row 2	504	505	506
	Row 1	507	506	509
2. Unit 2	Row 2	510 .	511	512
	Row 1	513 .	514	515
3. Unit 3	Row 2	516 .	517 •	518

r

THRESH ALL ROW 1 HEADS FROM ALL UNITS

r,

4. Weight of threshed grainGrams	519	•
5. Moisture of threshed grainPercent	520	•
Lab Technician		

UNITED STATES DEPARTMENT OF AGRICULTURE ECONOMICS AND STATISTICS SERVICE	FORM C—2A: 1981 SORGHUM YIELD SURVEY Research Lab Determinations C.E. 12-0039C-2A
YEAR, CROP, FORM, MONTH (1-4)	
1055	
Date(Se	571 571 ample Processed)

HEADS FROM THE 5 RESEARCH PLANTS

	Weight of Head (grams)	Weight of Threshed Grain (grams)	Number of Kernels
1. First Head	522	523	524
2. Second Head	525 •	526	527
3. Third Head	528	529 -	530
4. Fourth Head	531	532	533
5. Fifth Head	534	535	536
6. Loose grain left in bag		537	538

Lab Technician

UNITED STATES DEPARTMENT OF AGRICULTURE ECONOMICS AND STATISTICS SERVICE

FORM D: SORGHUM YIELD SURVEY 1981 Post-Harvest Interview

MONTH CODE			
Oct. 1 3	(1-4)		
Dec. 1 or later. 5			
	106		
Earlier this season, I (or a represent)	tive from our		
office) obtained some information of acreage and made some plant and he	en your sorghum rad counts in your	Dete ()	
sorghum field. I would like to know turned out in the sample field. This	v how the crop information	Starting Time	471
will help us in evaluating the counts	made this	-	
 Enter error of erric conduct for 			
1. Enter acres of grain sorgnum for	grain (item 3, on the back of Form)	().	600
	Semple Field	No Acres	601
2. How many acres of sorghum we	e or will be hervested for grain from	this field? Acres	•
If Item 2 is dif	ferent from Item 1, ask Item 3.		
If not, saip to	item 4.		
Do not change	ltem 1.		
3. Earlier in the crop year (Item 1)		being intended	
······································			407
4. How many hushels were or will l	Tot	al Bushels	
from these (Item 2) acres?		OR	[
	Bus	bels Per Acre	
5. Was there any significant demog	r in this field due to drought, floodin	S ,	609
insects, disease, lodging, hail or e	other causes?	. Yes = 1 No = 2 Enter Code	L
If "YES", give cause(s) below.			
		······································	
6. Has this sample field been play	ved since harvest?		
	lete e Frem F in the sample field		
YES 🗆 Belect	an alternate grain sorghum field for	gleaning if available in the tract.	
I would like to thank you for your	cooperation this season and hope		672
you will continue to have an intere	It in crop estimating and crop	Ending Time	680
pick up any loose grain left in the	sample plots to give us some	STATUS CODE	L
measure of harvesting loss.			
Enumerator			

UNITED STATES DEPARTMENT OF AGRICULTURE FORM E: SORGHUM YIELD SURVEY - 1981 ECONOMICS AND STATISTICS SERVICE POST-HARVEST GLEANINGS YEAR, CROP. FORM. MONTH (1-4) MONTH CODE Oct. 1 4 107_ 5 Nov. 1 The post-harvest field gleanings should be completed as soon after harvest as possible preferably)

within three days after harvest if the sample field has been plowed disced. or pastured since harvest select an atternate field for gleaning if one is available. in the tract

Datei Starting Time

.

Enumerator

FIELD OBSERVATION - Unit Location UNIT 1 UNIT 2 UNIT 3 Number of rows along edge of field 28 ÷, 20 Number of paces into field 702 703 701 a Measure distance from statks in ٩ Row 1 to stalks in Row 2 . Feet & Tenths 704 705 706 b. Measure distance from stalks in Feel & Tenths

.

GLEANINGS IN 3-FOOT UNITS

Check each box as completed	
-----------------------------	--

Row 1 to stalks in Row 5

- 3 Pick up all heads attached to stalks and all heads and pieces of heads with kernels in each middle. Depusit all grain in bay. Identify bag as "heads and pieces."
- Pick up all loose grain in middle for first row of each 4. unit. Deposit in a separate bag. Identify bag as "loose. grain".....

UN	17 1	UN	IT 2	UN	IT 3
()	()	e)
()	()	()

.

Was an alternate field used for making post-harvest observations? YES NO 5

If post-harvest observations cannot be made, give reason here

			Ending Time	772
			Status Code	780
POS	T-MARVEST LAB DETERMINATIONS			
6.	Weight of grain from heads	•• •••• ••• ••• •••	Grams	
7.	Weight of loose grain from ground		Grams	708
8	Moisture Content	· · · · · · · · · · · · · · · · · · ·	Percent (One Decimal)	
	Il samples combined for moisture te numbers combined	st, show sample Date Analyzed { } }.		710
	DO NOT show combined sample we	ghts in Item 6 or 7.		
Lab	Technicien			

APPENDIX 2: Maturity Code Descriptions

I. PREFLOWER (PREBLOOM)	All of the early growth stages of the sorghum plant before the flowers appear are considered preflower. This includes the plant emergence, leaf development, boot, and head emergence stages.
2. FLOWER (BLOOM)	This stage is very short. During this time, the head may appear to have a yellowish hue when the flower parts are showing.
3. MILK	Kernels are formed in heads. Kernels of grain are soft, moist and milky. When the grain is squeezed, a milky liquid can be observed.
4. SOFT DOUGH	The grains can be easily crushed and the contents of the grains are soft and can be kneaded like dough with only a few grains containing milk.
5. HARD DOUGH	The grains are fairly firm but not quite mature. The grains do not easily separate from the head. Nearly all of the final grain weight has accumulated.
6. MATURE	The grains readily part from the head. The grain is tough and is not easily crushed by the thumbnail.

APPENDIX 3: Plots of final head count vs independent variables by maturity class

PLOT A - Monthly stalk count vs. final head count, prebloom stage

PLOT B - Monthly stalk count vs. final head count bloom stage

PLOT D - Monthly head count vs. final head count, milk stage

PLOT E - Monthly head count vs. final head count, soft dough stage

PLOT F - Monthly head count vs. final head count hard dough stage

APPENDIX 4

A brief description of the regression diagnostics is shown below. The formulae for the threshold values are also given, where p is the number of independent variables in the model and n is the number of observations.

- Cook's Distance Measure (Cook's D) quantifies the effect an observation has on the least squares estimate of the parameter vector. The threshold values used were 0.105 (p=1), 0.195 (p=2), 0.266 (p=3), and 0.323 (p=4).
- 2. The covariance ratio for observation i, examines the determinant of the covariance matrix from the data set with no observations deleted and the determinant from the data set with the ith observation deleted. The threshold value were defined to be $1 \pm 3p/n$.
- 3. DFBETAS, for any observation i, measures the difference in a parameter estimate caused by deleting the ith observation, divided by standard error. A DFBETAS is computed for each independent variable in the model. The threshold values were defined as 2 [/n.
- 4. DFFITS, for observation i, is the difference in the fitted values scaled by the standard error resulting from the deletion of the ith observation. The threshold value used was $2\sqrt{P/n}$.
- 5. The studentized residual measures the magnitude of the i^{th} residual scaled by the standard error with the i^{th} observation removed. Threshold values of -2 and 2 were used.
- 6. The Variance Inflation Factor is an indication of the dependency between the regressor variables. A VIF of 1 indicates orthogonality in the design matrix. A value between 1 and 5 implies a weak dependency and a value greater than 10 implies a strong dependency. Values between 5 and 10 are inconclusive. The 1981 sorghum data did not produce any inconclusive values.

APPENDIX 5: Edit Limits

		1981 Sta	atistics		Recomm	endations
FORMS and VARIABLE	X	S	Min	Max	Lower limit	Upper limit
Form A						
JES acres	-	-	-	-	-	500
Length of interview (min)	18	9.7	5	53	5	35
Planting date	160	16.6	114	202	130	190
Planting depth (in)	1.9	.7	.8	5	1.0	3.5
Form B						
Stalk count	11.2	6.0	0	39	3	30
Head count	12.4	6.8	Ō	45	3	30
Culm diameter (mm)	9.4	2.6	2.0	18.9	4	14
Head length (in)	10.5	2.1	3.1	15.9	6	14
Head circumference (cm)	17.3	6.2	1.3	68.6	7	27
Volume factor	189.0	89.3	6.0	919.7	60	360
Heads per section	6.8	3.8	1	64	1	15
Weight per head (lbs)	.19	.095	.009	.733	.04	.4
4 - row spacing (ft)	10.3	2.1	2.7	14.0	6.0	13.3
Length of fieldwork (min)	119.4	36.8	19	255	75	180
Form C-1						
Dry matter fraction (Sept)	.39	.110	.25	.74	.28	.85
Dry matter fraction (Oct)	.55	.149	.28	.89		
Dry head weight (Sept)	23.5	16.5	.6	79.4	4.0	115.0
Dry head weight (Oct)	48.3	33.7	2.1	153.9		
Wet weight (Sept and Oct)	258.8	173.0	34.7	696.5	80.0	550.0
Form H						
% nitrogen (A)	33.1	26.9	5	82	_	-
% phosphate (A)	34.0	15.1	10	60	-	-
% potash (A)	11.9	8.5	6	30	-	-
Pounds per acre (A)	97.3	64.9	4	300	40	200
Nitrogen per acre (B)	84.3	37.4	10	180	20	150
Phosphate per acre (B)	36.0	8.8	20	50	20	50
Potash per acre (B)	38.3	13.3	30	60	30	60
Total percentage (A)	-	-	-	-	28	82

	_ 1981 Statistics				Recommendations	
FORMS and VARIABLE	X	S	Min	Max	Lower limit	Upper limit
Form C-2						
Weight in bags (gm)	499.8	267.1	23.8	1302.0	80	1000
Weight of heads (gm)	478.3	267.5	3.4	1281.6	-	-
Weight per head (gm)	77.4	39.2	3.4	384.5	15	150
Threshing fraction	.69	.116	.31	.89	.4	.8
Moisture (percent)	13.4	9.2	2.5	96.6	6.0	18.0
Form C-2A						
Head weight (gm)	62.5	37.7	1.3	245.5	12.0	130
Threshing fraction	.75	.15	.017	.97	.4	.85
Kernel count	2100.2	1201.1	2	7463	350	4000
Loose grain weight (gm)	3.7	4.0	0	20.7	0	8.0
Loose kernel count (gm)	157.4	173.9	0	865	0	300
Form D						
Interview length (min)	11.7	12.5	2	60	5	30
Yield (bushels per acre)	68.2	31.9	4	148	30	110
Form E						
4 - row space (ft)	10.1	2.3	2.3	14.2	6.0	13.3
Length of field work (min)	92.7	37.4	35	165	30	150
Weight of grain from heads (gm)	188.7	245.6	.8	1112.3	30.0	600.0
Weight of loose grain (gm)	15.9	18.3	1.4	90.3	2.0	50.0
Moisture (percent)	9.0	1.1	7.8	13.6	6.0	15.0